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Abstract

We analyze the collective dynamics of a number of individually heated rooms arranged in the form of a ring. The temperature of each
room is kept within a given band by a thermostat which makes it behave as a self-sustained oscillator. Each room interacts thermally only
with its immediate neighbors and with the exterior. The temperature in each room is modeled by a first-order differential equation.
Numerical results of the complete system show the presence of a rich array of synchronization dynamics in frequency and phase as well
as clustering and coupling-induced amplitude death.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Synchronization of a large number of weakly coupled,
self-sustained oscillators has recently been shown to exist
in many natural as well as engineering fields. Examples of
these, which include biological, chemical, optical, mechan-
ical, and electrical systems, are discussed in several books
[1–3]. Thermal systems also exhibit such behavior, as has
recently been experimentally demonstrated by the present
authors in a thermal-hydraulic network with secondary
loops [4] in which the behavior of the secondaries had pre-
viously been shown to be coupled [5,6]. The phenomenon is
of importance in practice from the perspective of design
and energy usage, particularly for temperature control sys-
tems. Even though it is common practice in thermal engi-
neering to design a complex system as if the sub-systems
that constitute it were functioning independently, coupling
could lead to complex or undesired dynamic behavior.
From a theoretical point of view, an understanding of
the dynamics of thermal systems that could lead to syn-
chronization is therefore essential to their design. Our goal
here is to study the simplest thermal system with coupling
that could exhibit such behavior. Simple mathematical
models have been proposed and explored for some systems
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in synchrony [7–10]. Local coupling, which considers cou-
pling only between neighboring sub-systems, such as that
assumed here, has been used for the analysis of lasers
[11], Josephson junction arrays [12], electronic circuits
[13,14], biological [15,16] and chemical oscillators [17,18].

To analyze the possibility of synchronization we con-
sider a collection of sub-systems that, if left to themselves,
exhibit self-sustained oscillations. There should be some
interaction between these sub-systems; it is usually found
that, if the coupling is too weak, the sub-systems behave
independently and, if too strong, the entire system behaves
as one [8]. In the present example, self-sustained oscilla-
tions in temperature are a natural consequence of using
thermostats, while the interaction is provided by heat
transfer between sub-systems. The simplest mathematical
model is obtained on using a lumped capacitance approxi-
mation which gives a first-order differential equation for
each sub-system. There is a forcing function that represents
heating sources which go on or off as temperatures go
below or above predetermined levels, respectively. A large
number of such systems arranged in the form of a ring,
each of which is locally coupled with its two nearest neigh-
bors through thermal transport, can be viewed as a system
of coupled oscillators. From a practical perspective, such a
system can represent, for example, an arrangement of
heated rooms in a building that are individually controlled
by thermostats.
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Nomenclature

al lth element of first row of circulant matrix A

A circulant matrix, defined after Eq. (5)
C equivalent heat capacity of walls and room air
K non-dimensional thermal coupling between

rooms
n total number of rooms
N number of rooms that are on
N average number of rooms that are on
q magnitude of heat source
qi heat source for room i
Qi non-dimensional heat source for room i

Q heat source vector
Qðsþj Þ heat source vector for interval sj < s 6 sj+1

r Kuramoto order parameter
R thermal resistance between adjacent rooms
R1 thermal resistance between room and outside
t time
T temperature
T1 outside temperature

Greek symbols

h non-dimensional temperature
H vector of room temperatures
ki eigenvalues
nj jth eigenvector
qj =exp(�i2pj/n)
s non-dimensional time
son time interval for on
soff time interval for off
sp period
/j phase angles

Subscripts

i room i

L lower temperature setting of thermostat
max maximum possible temperature
min minimum possible temperature
U upper temperature setting of thermostat
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2. Mathematical modeling

Consider an arrangement of n identical rooms as shown
in Fig. 1. The temperature Ti(t) of room i depends on time
t. It loses heat to the environment at a constant tempera-
ture T1, exchanges heat through separator walls with its
two neighbors i � 1 and i + 1, and gains heat from a source
qi(t) which compensates for the heat loss. Each room also
has an individual thermostat, the objective of which is to
control qi so as to maintain Ti within a given band [TL,TU].
If Ti rises above the upper limit TU the heat source for
room i is turned off and qi(t) = 0, and if it falls below the
Fig. 1. Multiple rooms in a ring.
lower limit TL it is turned on so that qi(t) = q. The temper-
ature of each of the rooms, if isolated, would thus oscillate
in time.

Assuming lumped capacitances, heat balance gives

C
dT i

dt
þ 1

R
ðT i � T iþ1Þ þ

1

R
ðT i � T i�1Þ þ

1

R1
ðT i � T1Þ ¼ qi;

ð1Þ

for i = 1, . . . ,n, where C is the equivalent heat capacity of
the walls of a room and the air within it, R is the thermal
resistance between adjacent rooms, and R1 is that between
a room and the outside. For simplicity all the rooms are ta-
ken to be identical, even though obviously there could be
large differences in practice. The subscript i is to be read
cyclically in the range 1 6 i 6 n, so that room numbers
n + 1 and �1 are i = 1 and i = n, respectively. It should
be pointed out that the problem is nonlinear since the value
of qi depends on Ti.

To non-dimensionalize the equation, we will use qR1
which is the maximum temperature increment above T1
that would be reached if the heat source were to be con-
stantly left on. With s = t/CR1, hi = (Ti � T1)/qR1, and
Qi = qi/q, we get

dhi

ds
þ Kð2hi � hiþ1 � hi�1Þ þ hi ¼ Qi; ð2Þ

where the thermal coupling parameter is K = R1/R. K rep-
resents the heat transfer between neighboring rooms as
compared to that with the exterior. The non-dimensional
heat source is

Qi ¼
0 if off ;

1 if on:

�
ð3Þ
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The highest and lowest non-dimensional temperatures pos-
sible if the heaters are all continuously left on or off are
hmax = 1 and hmin = 0, respectively. The lower and upper
temperature settings of the thermostats are non-dimension-
alized as

hL ¼
T L � T1

qR1
; ð4aÞ

hU ¼
T U � T1

qR1
: ð4bÞ

The parameters of the problem are the total number of
rooms n, the thermal coupling parameter K, the thermostat
settings hL and hU, and the initial conditions on
temperature.

We can rewrite Eq. (2) in matrix form as

dH
ds
¼ AHþQ; ð5Þ

where A is an n � n circulant matrix [19] with the first row
being {�(2K + 1),K, 0, . . .0,K}, and Q = {Q1(s), . . . ,
Qn(s)}T. The eigenvalues of A are

kj ¼
Xn�1

l¼0

ale
�i2plj=n; ð6Þ

where j = 0,1, . . . , (n � 1) and al is the lth element of the
first row of A. The corresponding eigenvectors are

nj ¼
1ffiffiffi
n
p f1; qj; q

2
j ; . . . ; qn�1

j g
T
; ð7Þ

where qj = exp(�i2pj/n).
The nonlinear set of Eqs. (2) and (3) are differential

equations in which the right-hand sides are discontinuous
in the dependent variables hi [20]; this is often known as
a switched system without impulse effects, in this case with
hysteresis in the switching [21]. The stability of switched
systems, even if the vector field for each switched mode is
linear as is the case here, is difficult to reduce to an eigen-
value problem and is often analyzed numerically [22,23].
Fig. 2. Temperature and heat source oscillations; K = 0, hU = 0.65,
hL = 0.15.
3. Oscillations without coupling

If there is no coupling between rooms, i.e., K = 0, each
room temperature can be solved separately. Eq. (2)
becomes

dhi

ds
þ hi ¼

0 if off ;

1 if on:

�
ð8Þ

The solution to which is

hi ¼
c1e�s if off ;

1þ c2e�s if on;

�
ð9Þ

where c1,c2 are constants that can be determined from the
initial condition. It can be shown that the on and off time
intervals are
son ¼ ln
1� hL

1� hU

; ð10aÞ

soff ¼ ln
hU

hL

; ð10bÞ

respectively. The total period of the oscillation is

sp ¼ ln
hUð1� hLÞ
hLð1� hUÞ

ð11Þ

and the frequency is 1/sp. The oscillation of temperature is
self-sustained and, on the average, the energy generated by
the heater is lost to the environment.

The oscillations of the temperatures hi and heating
source Qi are shown in Fig. 2 using n = 5 as an example;
this value of n will also be used in the rest of the paper.
The period and amplitude of the temperature oscillation
in Fig. 2a depends on the temperature limits; here we have
chosen hL = 0.15 and hU = 0.65. The initial conditions are
assumed identical for all rooms so that the hi(s) traces are
all the same. The heating function Qi(s) is shown in Fig. 2b,
and is again the same for all rooms. This representation is
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not very convenient to show the distribution of Qi(s) for
i = 1, . . . ,n if they were all different, which will be the case
in general. An alternative is in Fig. 2c: the room number is
indicated in the ordinate and time in the abscissa; white
indicates that the heating is on in that room at that instant
in time, and black that it is off.
Fig. 4. System behavior for

Fig. 3. System behavior for h
4. Oscillations with coupling

Now we take K 6¼ 0 in Eq. (2). Even though the problem
is nonlinear, we can take advantage of the fact that Q in
Eq. (5) is piecewise constant to devise a numerical method.
Let s1,s2,s3,. . . be the successive times when any one of the
hL = 0.01 and K = 0.05.

L = 0.01 and K = 0.015.
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rooms (generally speaking, different rooms) hits either the
lower or upper prescribed temperature bounds. Q changes
at these instants, and we will use the notation Qðsþj Þ to
indicate Q immediately after the discontinuity at s = sj.
Thus Q is constant for sj�1 < s < sj, and Eq. (5) can be eas-
ily solved in that time interval using Eqs. (6) and (7).
Fig. 6. System behavior for

Fig. 5. System behavior for
Knowing Qðsþj�1Þ and H(sj�1), we would like to integrate
the equation to find the next sj, Qðsþj Þ and H(sj) numeri-
cally. Using H(sj�1) as initial condition, we find that

HðsÞ¼ expfAðs�sj�1Þg½Hðsj�1ÞþA�1Qðsþj�1Þ��A�1Qðsþj�1Þ:
ð12Þ
hL = 0.01 and K = 0.5.

hL = 0.01 and K = 0.2.
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We can evaluate H(s) forward in time to find sj until one of
the room temperatures hits either a lower or an upper
bound. This is done iteratively using the bisection method.
We can then calculate the temperatures and the new heat-
ing distribution, H(sj) and Qðsþj Þ, respectively. From the
period sp it is possible to get an idea of how long it would
Fig. 7. System behavior for

Fig. 8. System behavior for
take for a certain number of periods to occur, and hence
for the response of the system to settle down.

As is commonly done in phase synchronization studies,
the Hilbert transform described in [4,24,25] is used to deter-
mine the instantaneous phases, /j(s), j = 1, . . . ,n for the
temperatures. In order to analyze the global behavior of
hL = 0.15 and K = 0.05.

hL = 0.15 and K = 1.3.
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the coupled system, a mean-field quantity r(s), also known
as Kuramoto order parameter [8,12], is defined as

r ¼ 1

n

Xn

j¼1

ei/j

�����
�����: ð13Þ

This parameter measures the degree of phase synchroniza-
tion of the oscillators. Full phase synchronization is
achieved as r ? 1.

There is another parameter that can be calculated to
indicate the overall performance of the thermal system; in
a building one may be interested in the instantaneous
energy input which is proportional to the number of rooms
that are being heated at that instant in time. This is

NðsÞ ¼
Xn

i¼1

QiðsÞ: ð14Þ

An additional concern could be the cost of running the sys-
tem that is related to the number of rooms that are on the
average on. Thus we can also define N as an average of
N(s) over time. From energy conservation, N is in effect re-
lated to the average temperature of the rooms.
Fig. 9. System behavior for hL = 0.15 and K = 1.4.
5. Numerical results

For rooms with the same temperature limits and cou-
pling parameters, if the initial temperatures are identical,
there is no difference in temperature between them and,
consequently, all temperatures will vary in the same way
as described in Section 3. Here we will look at the more
interesting case when the initial temperatures are different.
We will fix them at h1(0) = 1, h2(0) = exp(�1/8), h3(0) =
exp(�22/8), h4(0) = exp(�32/8), h5(0) = exp(�42/8). In
addition, the temperature limits will be chosen such that
as hU � hL = 0.5.

5.1. hL = 0.01

First, we assume hL close to hmin for which three differ-
ent values of K will be studied. The period is sp = 4.63. The
behavior for K = 0.015 is shown in Fig. 3. Frequency syn-
chronization is reached after a while as shown in Fig. 3a,
where only the time range from s = 380 to s = 400 is
shown. The heating sources take turns to be on and off with
the same period. The order is 1 on, all off, 4 on, all off, 2 on,
Fig. 10. System behavior for hL = 0.15 and K = 5.
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all off, 5 on, all off, 3 on, all off, 1 on, and so on in a pattern
that repeats itself forever. The number of rooms being
heated at any given instant is shown in Fig. 3b; either no
room or only one room is on at any given time. The tem-
peratures oscillations are shown in Fig. 3c; they are all
identical except for a phase shift. The order parameter r
is shown in Fig. 3d; it is less than unity since phase syn-
chronization is not reached.
Fig. 11. System behavior for

Fig. 12. System behavior for
Fig. 4 for K = 0.05 shows different dynamics. Now,
pairs of rooms (3 and 4, 2 and 5) become fully synchro-
nized and are on and off at the same time, as shown in
Fig. 4a. This clustering happens not only between neigh-
bors, such as 3 and 4, but also between 2 and 5 which
are farther apart. The number of rooms being heated varies
between zero and two, as shown in Fig. 4b. There are still
phase differences between the temperatures shown in
hL = 0.45 and K = 0.1.

hL = 0.45 and K = 0.15.
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Fig. 4c, and consequently the order parameter r shown in
Fig. 4d is less than unity, though it is larger than in Fig. 3d.

Fig. 5 shows the pattern when K is further increased to
0.2. Fig. 5a shows that the heat sources in 2 and 5 are dri-
ven to an off state, while 3 and 4 are still clustered together
but out of phase with 1. The number of rooms being heated
varies between zero and two. The variation of temperature
Fig. 13. System behavior fo

Fig. 14. System behavior fo
is shown in Fig. 5c. The order parameter r in Fig. 5d
reaches higher values than in Fig. 4d.

At K = 0.5, as shown in Fig. 6, phase synchronization
occurs around s = 15; all rooms are then on and off at
the same time, as shown in Figs. 6a and 6b, and the room
temperatures shown in Fig. 5c are identical. The order
parameter at phase synchronization in Fig. 6d quickly
r hL = 0.45 and K = 0.3.

r hL = 0.45 and K = 0.5.
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reaches unity. For K > 0.5, which will not be shown here,
the phases are also synchronized, but much quicker.

5.2. hL = 0.15

hL is now set slightly higher. Since sp = 2.35, the settling-
down time is now about half. At K = 0.05, phase synchro-
nization is obtained. All rooms are fully synchronized with
the same period, as shown in Figs. 7a–c. The order param-
eter equals unity at full synchronization, as shown in
Fig. 7d. For K = 1.3 there is on–off synchronization of
the temperatures in rooms 1 and 2, as shown in Fig. 8.
Heating in 3 and 5 is always off and in 4 always on; the
order parameter r is slightly less than unity. On increasing
K to 1.4, as shown in Fig. 9, it is seen that temperature
oscillations have died out; the neighbors 1, 2 and 3 are
always on, and 4 and 5 always off. The temperatures,
shown in Fig. 9c reach a time-independent state and do
not cross the limits of the thermostat settings. For K = 5,
Fig. 10 shows that 3 and 5 are on while the others are
off. The variation of the steady-state temperatures between
the rooms in Fig. 10c is smaller than in Fig. 9c. When
K = 10 room 4 becomes on again, and the situation is sim-
ilar to that in Fig. 9, except that three rooms need to be on,
instead of only two.

5.3. hL = 0.45

Finally, we choose hU near hmax so that sp = 3.15. For
K = 0.05, there are three clusters: 1 and 5; 2 and 4; and
3, but the patterns do not completely repeat. On increasing
K to 0.1, the frequency synchronization shown in Fig. 11
Fig. 15. Return maps (w
occurs in the system after about 50 units of time. For
K = 0.15, Fig. 12 shows that there are again three clusters,
for K = 0.3 Fig. 13 is periodic, and for K = 0.5 Fig. 14 indi-
cates that there is phase synchronization in all rooms. For
K = 0.6 rooms 3 and 5 stay on while the others periodically
flash. For K = 0.7 the oscillations disappear and the tem-
peratures are fixed.

5.4. Return maps

Additional information about the periodicity of tem-
perature oscillations is given by return maps, like for
example si vs. si+1. All periodic behaviors give a single
dot, but the most interesting results are for hL = 0.45,
as shown in Fig. 15. Frequency synchronization is shown
in Fig. 15a. As K increases, periodic behaviors repre-
sented by a finite number of dots appear in Figs. 15b
and c. Finally there is phase synchronization as shown
in Fig. 15d.

5.5. Average fraction of heated rooms

N=n is the fraction of rooms that are, on the average, on.
This is shown for different hL in Fig. 16. When hL = 0.01,
frequency synchronization gives a least value for K = 0.2.
When hL = 0.15, N=n generally increases with the coupling
strength and there is no optimum, but for hL = 0.45 there
may be more than one. It is important to notice that for
a given hL, i.e., for prescribed thermostat settings, there
are different fractions of rooms that are on depending on
the thermal coupling K. The energy requirement, and con-
sequently, the average temperature will also be different.
ith room numbers).



Fig. 16. Average fraction of rooms that are on.
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6. Discussion and conclusions

A simple mathematical model has been used to analyze
the dynamic behavior of a system of a number of thermally
coupled and thermostatically controlled oscillators. The
example of a five-room system is calculated in detail as a
function of the thermostat settings and the thermal cou-
pling between neighbors. The results show a rich array of
dynamics that has been previously observed for other com-
plex systems. We have found frequency and phase synchro-
nization, clustering, and coupling-induced oscillation
death. Other parameters which could have been varied
are those that reflect differences between the rooms, the
thermal coupling between them, initial conditions, the
number of rooms, and the dead-band of the thermostat
in each room. All of these will affect the long-time dynam-
ics of the system and their effect should be studied.

The present results are significant for complex thermal
systems which consist of a large number of weakly coupled
sub-systems, each of which individually acts as a self-sus-
tained oscillator. For building heating, as an example, the
temperature dynamics of the rooms are affected by thermal
conduction through the wall between adjacent rooms. A
fully synchronized situation, if it occurs, will require a
demand for maximum heating capacity in the building
for an interval of time followed by another of zero demand.
For a reduction in installed capacity, it may be desirable to
have a smaller variation of the demand over time, in which
case the control system will have to be properly designed
for the purpose. The dynamics of the collective behavior
also affects the average number of rooms that are on,
and thus the average temperature of the rooms and the
energy usage. By changing the coupling parameter it is pos-
sible to increase or decrease the average temperature in the
rooms while keeping them within the allowable thermostat
limits. In fact, for high thermal coupling, it is even possible
to eliminate heating from certain rooms because of heat
sharing.
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